Non-stationary electron-positron cascades

A.N. Timokhin University of California, Berkeley

June 21, 2010

Pulsar Magnetosphere: "Large scale view"

Pulsar Magnetosphere: "Observer's view"

Pulsar Magnetosphere: "Theorist's view"

Magnetosphere Polar cap cascade Enables smooth particle outflow \rightarrow Sets the current density Supplies magnetosphere with plasma; Is part of the global electric circuit

Force-free magnetosphere: 3D Numerical Model

(Spitkovsky 2006)

Aligned Rotator-the simplest possible case

Free parameters of the model:

- \square Size of the corotating zone x_0 :

 How many field lines cross the Light Cylinder
- ☐ Angular velocity of the open magnetic field lines

$$\Omega(\psi) = \Omega_{ ext{NS}} \left(1 + rac{dV}{d\psi}
ight)$$

Shape of the Light Cylinder

Magnetosphere with $\Omega(\psi) = \Omega_{Ns}$: $\chi_0 = 1$

Magnetosphere with $\Omega(\psi) = \Omega_{NS}$: $\chi_0 = .7$

Force-free magnetosphere vs. polar cap cascades

- ☐ Force-free magnetosphere cannot exist without electron-positron pair production in the polar cap
- ☐ The same magnetospheric current flows trough the cascade zone
- □ Pair creation is process with a threshold. It is not obviously that any current density can flow through the cascade zone

Stationary cascades

Arons & Scharlemann '79, Daugherty & Harding '82 Muslimov & Tsygan '92, Muslimov & Harding '98, Hibschman & Arons '01 **Underlying assumption:** Stationary unidirectional particle flow

- **Predictions:**
 - ☐ Current density is almost equal to the Goldreich-Julian current density
 - $\hfill\Box$ Potential drop in the cascade zone is very small $\sim 1-2\%V_{\text{vac}}$

Current density in the polar cap

Stationary cascades

Arons & Scharlemann '79, Daugherty & Harding '82 Muslimov & Tsygan '92, Muslimov & Harding '98, Hibschman & Arons '01 **Underlying assumption:** Stationary unidirectional particle flow

Do not work! – do not provide the required current density

Predictions:

- □ Current density is almost equal to the Goldreich-Julian current density
- \square Potential drop in the cascade zone is very small $\sim 1-2\%V_{vac}$

Why can non-stationarity help?

magnetosphere timescales (seconds) « cascade time scales (microseconds)

only time-average current density matters

Self-consistent modeling of electron-positron pair cascades

What to model:

- 1. particles are accelerated by the electric field
- 2. particles emit gamma-rays
- 3. gamma-rays propagate some distanse, are absorbed in the strong magnetic field and create electron-positron pairs
- 4. redistribution of charged particles changes the accelerating electric field
- 5. electrodynamics must be right:
 - □ electric field due to NS rotation
 - □ electric field due to charged particles distribution
 - □ the average current density is set by the magnetosphere

Code structure

Particle acceleration \leftrightarrow Electric field PIC Particles \rightarrow Photons \rightarrow Particles(Pairs) Monte Carlo

Physical model

Ruderman-Sutherland model: no particles can be extracted from the NS surface – the simplest possible model

1D approximation should work perfectly for this problem.

SETUP

1D Electrostatic model

$$\partial_t \mathbf{E}_{\parallel} = -4\pi(\mathbf{j} - \mathbf{j}_0)$$

 $j_0 = c \nabla \times \mathbf{B}$ – the current density required by the magnetosphere

- gamma-ray production: Curvature radiation
- pair creation: single photon absorption in dipole magnetic field

Phase portrait of the cascade

(xp_jp1_s1.avi)

Charge density η

(rho_jp1_s1.avi)

Cascade development: full cycle

Cascade development: plasma blob formation

Cascade development: what is going on

Charge density: $j = 0.5 j_{GJ}$

(rho_jp0.5.avi)

Particle "thermalization"

(xp_track_jp1_1e4.avi)

Particle energy distribution

Superluminal wave: particle number density (ep_wave_propagation.avi)

Superluminal wave: owerview

Summary

